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Abstract Learning function relations or understanding structures of data lying in
manifolds embedded in huge dimensional Euclidean spaces is an important topic in
learning theory. In this paper we study the approximation and learning by Gaussians
of functions defined on a d-dimensional connected compact C>* Riemannian sub-
manifold of IR” which is isometrically embedded. We show that the convolution with
the Gaussian kernel with variance o provides the uniform approximation order of
O(o*) when the approximated function is Lipschitz s € (0, 1]. The uniform normal
neighborhoods of a compact Riemannian manifold play a central role in deriving the
approximation order. This approximation result is used to investigate the regression
learning algorithm generated by the multi-kernel least square regularization scheme
associated with Gaussian kernels with flexible variances. When the regression func-
tion is Lipschitz s, our learning rate is (log> m)/m)* 49 where m is the sample size.
When the manifold dimension d is smaller than the dimension n of the underlying
Euclidean space, this rate is much faster compared with those in the literature. By
comparing approximation orders, we also show the essential difference between
approximation schemes with flexible variances and those with a single variance.
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1 Introduction and main results

Learning theory studies learning of function relations or data structures from sam-
ples. The desired function or data arise from physical or biological systems, engi-
neering problems, financial studies, and many other fields. They can be effectively
modelled or analyzed on an input space X which is often a low-dimensional manifold
embedded in a Euclidean space IR". In many applications such as gene expression
analysis, it is observed that the dimension # of the underlying Euclidean space is
huge while the intrinsic dimension d of the manifold X is much smaller d << n.
This has led to the hot topic of manifold learning and several important learning
strategies including dimensionality reduction [4, 12], feature selection [6, 18, 21],
semi-supervised learning [3, 21], and learning topological statistics [14].

To model such situations, as in the literature of manifold learning [2, 14, 18],
we assume throughout the paper that X is a d-dimensional connected compact C*®
submanifold of IR” which is isometrically embedded. For detailed definition and
properties, see [5, 7] and the description in Section 2. In particular, we know that X
is a metric space with the metric d y and the inclusion map @ : (X, dy) — (IR", | - |)
is well defined and continuous (actually it is C*>). Here || - || is the norm in IR".

The purpose of this paper is to investigate the approximation of functions on
Riemannian manifolds by Gaussians and its applications in quantitative analysis
of learning algorithms. The Gaussians form a family of functions with an index
o € (0, 00) defined for x, y € X or on the whole underlying space IR" by

lx — YIIZ}

202

Ko (x,y) = exp {— (1)
When X has nonempty interior as a subset of IR"(d = n), the approximation of
functions from various function spaces by Gaussians is a classical topic in approxi-
mation theory [11] and its applications in error analysis of learning algorithms are
well understood [17]. When X is a Riemannian submanifold of IR” with dimension
d < n, things are totally different and little is known. In fact, our assumption that the
embedding map & is the inclusion plays an essential role. For a general embedding
map (which always exists according to the Nash Embedding Theorem), we do not
know how to establish similar analysis for the approximation.

We consider the approximation in the space C(X) of continuous functions on X
with the norm || f|lcx) = maxsex | f(x)|. The approximation scheme is given by a
family of linear operators {I, : C(X) — C(X)}s=0 as

1
Lo = ——— [ Ki(x ) f0dV )
Varo)' Jx

(V2o

1 llx — ylI?
= W/XGXP {—T} FfdV(y), x € X, )
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where V is the Riemannian volume measure of X. For details on the Riemannian
volume measure of a Riemannian manifold, see Section 2. It is a generalization of
the Lebesgue measure in a Euclidean space. A d-dimensional manifold is, roughly
speaking, a topological space which is locally Euclidean of dimension d. This verifies

the use of the power d in the scaling factor (\ﬁl 7.

2mo)

To get explicit approximation orders, we need some smoothness of the approxi-
mated function f. Here we use the Lipschitz smoothness.

Definition 1 Let X be a Riemannian manifold with the metricdy and 0 < s < 1. We
say that a bounded continuous function f on X is in the Lipschitz s space Lip(s) =
Lip(s, X) if there exists a constant C > 0 such that for all x, y € X,

[f(0) = fn] = Cldx(x, y)*.

The norm in the space Lip(s) is defined as

| £l ips) := | flLipes) + I Fllccx
where | f]1ip(s) is the seminorm

@ s
|f|Llp(S) T xilyng (dx(x, ») '

The space Lip(s) is a Banach space. The smoothness of a function f € Lip(s) is
measured by the index s. The bigger the index s is, the smoother the function f is.
Our first main result is the following theorem which will be proved in Section 3.

Theorem 1 Let X be a connected compact C* submanifold of IR" which is isomet-
rically embedded and of dimension d. Define I, : C(X) — C(X) for o > 0 by (2). If
f € Lip(s) with 0 < s < 1, then there holds

1o(f) = flicen < Cxl FlLipyo® Vo >0, (3)

where Cx is a positive constant independent of f or o.

Due to a phenomenon of saturation, the order of approximation in (3) cannot be
increased to s > 2 on function spaces of higher order Lipschitz smoothness (see [11]),
though extensions to orders with 1 <s < 2 are possible. Convergence rates like (3)
may be established for other function spaces such as L?(X) and for non-compact
manifolds (see the special example in Proposition 1 below), which is out of the scope
of the paper.

Our second main result is the error analysis for the regression algorithm generated
by the multi-kernel least-square regularization scheme associated with Gaussians
with flexible variance [22] which is an application of Theorem 1 in learning theory.

In regression problems, we assume that the sample z = {(x;, y;)}/2, is indepen-
dently drawn according to a probability measure p on Z := X x Y with Y =1R.
The measure p can be decomposed into the marginal distribution py on X and the
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conditional distribution p(-|x) at x € X. The goal of the regression problem is to learn
the regression function

fr(x) = /dep(ylx), xeX 4)

from the sample z by some learning algorithms. The algorithm considered here is a
kernel method.

A Mercer kernel K : X x X — IR is a continuous and symmetric function which is
positive semidefinite in the sense that for any finite set of points {xi, - -- , x,} € X, the
matrix (K(x;, x j))ﬁ j=1 1s positive semidefinite. The reproducing kernel Hilbert space
(RKHS) Hk associated with the kernel K is defined [1] to be the completion of
the linear span of the set of functions {K, = K(x, -) : x € X} with the inner product
(-, )k given by (K, K;)x = K(x, y). Its reproducing property plays a special role in
learning theory:

(K, flx = f(x), xe X, [feHk. ©)

For each o € (0, 00), the Gaussian (1) on X is a Mercer kernel [9] and the
corresponding RKHS is denoted by H g, with associated norm | - ||k, .

We consider a multi-kernel regularization scheme. It is a least-square regularized
algorithm for the regression problem associated with the Gaussians with flexible
variance (0 < o < oo) defined by

fz; i=arg min  min {] Z (f(xi) — y,-)2 +)»||f||%<a} . (6)

o0e(0,400) feHk, | M =1
Here A > 0 is called the regularization parameter.

Theorem 2 Let X be a connected compact C* submanifold of IR" which is isomet-
rically embedded and of dimension d. Let f,; be defined by (6) with a sample z =
{Cxi, y)Y2, independently drawn according to p. If f, € Lip(s) for some 0 <s <1,

2 _s+d
then by taking » = (£) %", we have

2\ &1
IEZEZ'” {” fZ.,)» - fp”i%x} = O((log m) > (7)

m

The least-square regularization scheme with one Mercer kernel has been well
understood in learning theory for various purposes including regression and classifi-
cation [10, 13, 20]. But the approximation ability of the regularization scheme with
one fixed Gaussian is weak, as shown in [19] and in Section 5 of this paper.

When all the Gaussians with o € (0, c0) are included in the multi-kernel regular-
ization scheme (6), the approximation ability of the scheme and hence the learning
rates are greatly improved. This has been studied recently in [17, 25] and [22] for
classification. The sample error for the algorithm (6) was estimated in [25] by means
of bounding empirical covering numbers for the union of unit balls of the correspond-
ing infinitely many reproducing kernel Hilbert spaces. When py is the Lebesgue
measure, X is a domain with Lipschitz boundary of IR"” meaning that d = n, and
f, lies in the Sobolev space H*(X), some approximation error estimates by means of
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the Fourier transform on IR” led to E,czn{l| fz; — f» ”22()()} = O((logm)"/>m~ =)
in [25] and learning rates with confidence in [17]. These learning rates are better
than (7) in the case d = n. However, in our current setting the input space X is a
Riemannian submanifold of IR” with dimension d. The Fourier transform technique
cannot be used for our estimates of approximation orders, which is the key difficulty
we overcome. So the learning rate stated in Theorem 2 is completely new. When the
manifold dimension d i 1s much smaller than n, the index g7 appearing in (7) is much
better than the index g5, in [17, 25] if we regard X as a subset of IR". As in the case
of domains (d = n), it would be interesting to derive optimal or almost optimal rates
for the learning algorithm (6).

Our ideas for deriving quantitative analysis for learning algorithms on
Riemannian manifolds can be extended to other problems such as online learning
[24] and feature selection [15].

2 Ideas and knowledge on Riemannian manifolds

In this section, we give some ideas on the approximation by Gaussians for the proof
of Theorem 1 and then introduce two important concepts for Riemannian manifolds:
exponential map and uniform normal neighborhoods which will play an important
role in our proof.

2.1 Some ideas from Gaussian approximation on IR"

Let us recall the following standard and well-known result [11] for approximation by
Gaussians on the whole Euclidean space IR". We state it and give its proof in order
to illustrate general ideas for deriving our error bounds.

Proposition 1 If f € Lip(s, IR") for some 0 < s < 1, then for every o > 0, we have

1 _ yl2
o oo [ o - oo

o2 (H+S) S
<12 F |f|L1p(s)

sup
xelR"

where T is the Gamma function given for o € (0, 00) by I'(a) = fooo r*~le~"dr.

Proof Let x € IR". Since

1 _ 2
(ma)n/n exp{_7|lx202yll }dy: L, (8)

we can express f(x) as

1 llx — yII?
fx) = («/T]TU)nf CXP{—T] fody.
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It follows from the definition of the Lipschitz seminorm | f|z,( that

1 _ 2
‘ [ e {—M} f@)dy = £00)

(V2o 207
1 llx = ylI? }
_ — — d
= Vo) I, e"p{ T B

1 lx — ylI?
< (JZTTG)”/]R”GXP{_%; lx — ylI*dyl flLipes)-

Recall that by spherical coordinates for IR", for a radial function A(]|y||) on IR" with
a univariate function 4 : IR — IR, there holds

| miyiay = 2 [ morar ©)
R” L'n/2) Jo

Applying (9) to the function A(r) = r* exp{—%}, we have

! llx—y||2}
A - dv —
‘(mo)” /]R e"p{ 5o [ fWdy— f)

27[”/2 1 oo n—1+s r2
S L ] B G I
_ e
r@

226°| £l Lip(s)-
This bound is independent of x € IR", so the proposition is proved. O

If we divide IR” into two parts: a neighborhood B, (x) of x with suitable radius
and its complement IR" \ B, (x), we see two key features caused by the fast decay of
the Gaussian: the first is the fast decay of the kernel K, (x, y) when ||x — y| becomes

large making fIR,,\B ) K, (x, y)|lx — y|I*dy = O(c*); the second is that

I / { ||x—y||2}
| expl -~ 10
Wiy I Tl 202 |V (10)

Such a neighborhood can be chosen as B, (x) ={y€IR": ||x— y||<v/2n+20,/log(1/0)}.
Two key features allow us to adapt the proof of Proposition 1 to a manifold setting:
choosing suitable appropriate atlas (U;, ¢;) on which the Riemannian volume mea-
sure corresponds to a good approximation of the Lebesgue measure on the mapped
region on IRY; then computing approximately in the small region of IR?. This proce-
dure requires some good properties of the atlas (U;, ¢;) of the manifold, which leads
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to two important concepts in Riemannian manifold: exponential map and uniform
normal neighborhoods introduced into learning theory in e.g. [2, 14].

2.2 Riemannian structures

A tangent vector v at p € X is a linear functional on C*(X) satisfying v(fg) =
v(f)g(p) + f(p)v(g). Denote by T,(X) the tangent space consisting of all tangent
vectors of X at p. The C* map ®: X — IR" induces a map d®,: T,(X)
To(p(IR") for each p € X expressed as

(dD, () () = v(f o ®), ve TyX), feC(R".

Many quantities of Riemannian manifolds (such as area and length) are deter-
mined by Riemannian structures.

Definition 2 A Riemannian structure g on a C* manifold X is an inner product g,
on each T,(X) such that, for each pair of C* vector fields Y and Z, the function
from X to IR given by

p = gp(Yp, Zp)

is C*. Here for a vector field Y : C*(X) — C*(X), Y, is the tangent vector defined
by Y,f=Yf(p) for fe C®(X). If X is isometrically embedded in IR" by the
inclusion map @ : X — IR", then g, has a special form given by

&Yy, Z,) =(dP,(Y)), dP,(Z )R- (11)

The special feature of the isometrically embedded manifold X < IR" is that the
inner product on the tangent space T¢(,) (IR") is identical with that in IR".

Let us illustrate the concepts of tangent space and Riemannian structure in terms
of local coordinates.

Letgp: U C R’ - Xbea system of coordinates around p and g = o(x!, x%, -,
x)epU) c X with (x',x%,---,x) eU. Let yj() = p(x', -, X x4+ 1, X',

-+, x%) for 1 € (—¢, €) with sufficiently small € > 0, then (5% (¢))(f) := d(’;"[‘”‘)’
=0

. (q)}l(.l:1 forms a basis

gives a tangent vector %(q) in the tangent space T, (X) and {g
of T,(X). Under this basis, the map d®, can be determined by

0 d(® o Y;
0, (Li0) = 20280

=1, .d 12
I i (12)

t=0

The Riemannian structure g of the isometrically embedded manifold X can be
expressed under this basis as

0 ) -
gf;(xl, s xdy = <dd>q (ﬁ(@) ,do, (W(Q)>>mn oo Lj=1do (13)
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In fact, any pair of tangent vectors v, w € T,;(X) can be written as v = Zl | v e (q)
and w = Zfl:l w'-2 (). In this form, the inner product (11) equals

ax

d
ggv,w) =) viwlg, (—(q) (q))

ij=1

a0 d 9
= Z U1w1<dCDq (@(Q)) s dd)l] (ax](q)>>lR”

i, j=1

d
= Z viw/gf;-(xl, cee ,xd).

ij=1

The function g?; which is C® on U is called the local representation of the
Riemannian structure in the coordinate system (U, ¢).

2.3 Exponential map and uniform normal neighborhoods

To understand the local structure we use the concept of exponential map based on
geodesics which are special curves satisfying some ordinary differential equations,
for details, see [7].

Definition 3 For p € X andv € T,(X),lety(t, p,v),t > 0, be the geodesic satisfying
y(0, p,v) = p and y’(0, p, v) = v. The exponential map &, : T,,(X) — X is defined
by &) =y (1, p,v).

Recall that a Riemannian structure gives an inner product g, hence the metric
on T,(X): |v] =./g¢(v,v). A minimizing geodesic joining two points p,q € X is
a geodesic y(7),t) <t < t;, having the minimum length f[;‘ |y'(®)|dt among all geo-
desics joining p and ¢q. It carries the tangent space T,(X) at p to the tangent
space T, (X) at y(t) € X smoothly by parallel transport [7]: v € T,(X) > v €
T, (X). A special feature of this parallel transport is that it keeps the inner product:
8oy P, w0y =g, (v, w),V v, we T,(X). In particular, g, (v7, w?) = g, (v, w).

By [7], we know that for each p € X, there exists a strongly convex neighborhood
U, of p, thatis, for any two points g1, ¢, in the closure 7,, of U,, there exists a unique
minimizing geodesic y joining g; and g, whose interior is contained in U,,.

Choose an orthonormal basis {e;, e, - - - , eq} of T,(X), then for each g € U,, the
set of tangent vectors {ef, 1, -- - , €1}, moved by parallel transport from p to g along
the unique minimizing geodesic, forrns an orthonormal basis of 7,(X). In addition,
this frame depends smoothly on gq.

In order to study the structure in a small neighborhood of each g € U, we need
the concept of uniform normal neighborhood of p. Denote Bs(0) = {v € T4(X) :
[v] < 8} as the ball of T, (X) centered at 0 with radius 6.

Definition 4 Anopenset U C X is called uniformly normal if there exists some § > 0
such that U < &,(B;(0)) for everyg € U.

@ Springer



Learning and approximation by Gaussians on Riemannian manifolds

The following proposition which will be proved in the Appendix tells us the
existence of a special uniformly normal neighborhood.

Proposition 2 For every p € X there exist a neighborhood W, and a number §, > 0
such that the following conditions hold:

(a) For every g € W), the map &, : Bs,(0) C Ty(X) — X is a diffeomorphism on

Bs,(0);
(b) W; is uniformly normal with respect to §,, that is, W, C £,(B;,(0)) for every
qe W,
(c) The closure of W, is contained in a strongly convex neighborhood U, of p.
Since we have an orthonormal basis {e‘l’,u- ,eg} of T,(X) for each q € W),
according to (a) of Proposition 2, the map ¢? from U = {u € R?: lull < 8,} C R?
to X defined by ¢4 (u', --- ,ut) = Sq(zl_l u'el) gives a system of coordinates around

q. We call such coordinates g-normal coordinates. Under these normal coordinates,
gf](u) = gﬁl(u) is well defined for g € W, and u € U, and is C°o as a function on
W, x U. It satisfies gl](O) = §;;: accordlng to the definition of au, (g) by means of
the local coordinates (U, ¢9) and ¢4(0, ---,0,1,0,---,0) =&, (tef’) for f e C*(X)
there holds (5% (¢))(f) = M but &, (teq) =y(l,q,tel) =yt q, e, sowe

=0
q
have d(f°£ e ))\ d(foyfftq & )) 0= = ¢ (f) Thus {52 (¢) = €/}, is an orthonormal

basis on T (X). Hence 8H0) = g4(3% (@), 725(@) = gq(e], ) = 5.
ForueU,letv= Z:-lzl uel. By (a) of Proposition 2, there exists a minimizing
geodesic y(t,q,v),0 <t < 1,such that y(0,q,v) =¢q,y'(0,q,v) =vand y(1,q,v) =

E,(v). Hence dx(q,& W) = [y ly'(t,q, v)ldt = [} y'(0,q,v)ldt = [, |vldt = |v| =
|lu]|. That is,

dx (q & (Zu )) lull, — Viu| <8, (14)

From the above discussion we have the following proposition.

Proposition 3 For p € X, choose W, and §, as in Proposition 2. For each g € W),
choose g-normal coordinates (U, ) and the corresponding local representation g?-
of the Riemannian structure as above. Then the following two bounds hold with a
constant C, independent of q € W,:

‘,/det(g,»q,»)(u‘, ceuh) =1 < Cpllull, Viull < 8,/2, (15)
|(@x(@.0)" =l = 2| < Cpdx(@. )", Vx € &(BspO).  (16)

This result has been proved with 8,,/2 replaced by §,, as Proposition 2.2 in [14]. For
completeness, we will give a proof in the appendix.

Now we can give the Riemannian volume measure. It is a standard measure on the
Riemannian manifold which generalizes the Lebesgue measure of Euclidean spaces
and has a clear geometric meaning: for any U C X, [, dV = Vol(U). Moreover [7],
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if (U, ¢) is a system of coordinates with ¢ : U C IR — X, then for any measurable
function f,

fav = / F@)y/det(ghy @', - uhydu" - - du. (17)
#U) U )

3 Approximation by Gaussians
To prove our first main result, we need the following lemma.

Lemma 1 Let X be a connected compact C* submanifold of R" which is isometri-
cally embedded. Then there exists a positive constant Cy > 1 such that

dx(x,y) = Collx = yll. Vx.yeX. (18)
Now we are in a position to prove Theorem 1.

Proof of Theorem 1 Let W, §, and C, as in Proposition 3. Since X € U,cx W, and
X is compact, there exists a finite subset P of X such that X € U,.pW,. Then
11 () = fllccxy = maxpep |1 (f) = flicw,)- Also, for o > oy,

1 Vol(X Vol(X
s (Hllcx) = W/;( I fllendV = (\/cz)—;a;llfllcu() < («/;)Tr(a(]id“f”a)().

Vol(X)
(V2m o)

So (3) is verified with Cy = max {(
some oy > 0 that

115 (f) = fllecw, < Cxpl fllLipsyo®s YO <o <00, peP. (19)

+ 1)o;*, max,ep Cy, p} if we can prove for

Take §* = min,cp {min{%”, ﬁ}} > 0 and Cy asin (18). Take 0 < oy <  such that

Cov/2d + 200,/log o, ' < 8*. We prove (19) in three steps. Let p € P and 0 < o < 0.

Step 1:  Decomposition. Let ¢ € W),. Choose

1
Bi .= {x € X:dx(q,x) < Cm/2d+20‘/10g—}.
o

Since &, is a diffeomorphism on Bs-(0), we see from (14) that B C
E,(Bs-(0)) and B = {5q(2f1=1 uely:ue B, )} where

~ 1
B, = {u eRY: |u|| < CO\/2d+20,/10g—}. (20)
o

Denote ¢4 (u) =Sq(2f1:1 u'el) foru=(u', ..., u?) e R%. Then B! =¢9(BY).
Separating the domain X into two parts, we have

I (H@ = [ Keta.n rnaviy)

1
(V2mo)d
1

+— K, (q. dv(y).
NS /X\Bz @ ) fDdV ()
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By (17), the first term on the above right hand side equals

{ llg — 7@l
xpl — 14— ¢ WI

23 }f(qb‘f(u)) det(g}) (u)du.

1
(V2r0) /B )

Using (8), we can decompose f(q) as

1 lull?
(V2m0)! /B P { } @)

1 flu ||2}
—_— du.
+ (V2mo)d ~/IR"\§U P { 1@

Combining the above decomposition, we have

fl@) =

IL(NH () — f@=J]i+ )2
where

1 g — )|

J1 = (Somord /Eg {exp{ - T}f(d’q(u)) det(g};) (w)
2
—exp{ flul] }f( )}

1
Jy= —— K, (q, dv
2= Toa) /X\BZ (q.y) f(»aV(y)

1 llu |I2}
—— du.
(«/Ea)d/md\gn“p{ f@

eay

Step 2:  Estimation of J for the error in a neighborhood. We separate the error J;

further as

1 Ilullz}
- - q _
Ji = ooy fg exp{ [f@Tw)) — f(qg)]du

N 1 / [exp{_ ||q—¢q(u)llz}
(V2mo)d JB, 202

2
_ exp{ lul ”f(¢"( )du

202

_ 2
1 [exp{—m}fw(u»( det g0 — 1) du

+7
(W2mo)d JE,
=T+ I+

Since fe Lip(s), We know that | f(¢9(w))— f(q)| < < | flLipes) (dx (97 (w), q))" .

By (14), foru € Bg, dx(q, p9(w)) = |lu|| < 8* < . So by (16),

—2C

1 ~
[llp? (@) — qlI* — lul?| < Enuuz, Vu € BY.

(22)

@ Springer



G.-B. Ye, D.-X. Zhou

It follows that ||¢9(u) — q| < 2||u||. Thus

|1l < i f exp{ - ”uHZ}ZSIIuIISdu.
(2mo) JB, 20°
By a change of variables “ and (9), we have

U
r¢)

[

FARCZ f|Lip(S)2SUS/ L EXp [ ——- } lulldu = | flLips)o”.
R

Consider the term J{. Applying (14) and (16) of Proposition 3, we know that
foru € B,, ¢?(u) € gq(Bap/z(O)) and

|d%(q. ¢7 W) — llg — d?WII*| = |lul* = llg — ¢7 @I
< Cyd(q, ¢7 () = Cyllul’.

It follows from (16) and the elementary inequality |e™¢ —e™”| <
la — b| max{e~, e~?} (valid for any a, b > 0) that

{ ||q—¢”(u)||2} { IIMII2H
expy — —————— —expy — du

202 202

] < ||f||C(X)/
U= (Vare)d U,

— 1 2 2 C 3
- Mllew / max{exp{_ lg — ¢ )| },exp{_”“” ” plal?®
(W2mo)d JB, 202 202 262

This in connection with (22) implies

2 C 3
] < Il fllcco /N exp{ ||u||} pllull du
B,

~ (W2mo)d T 402 | 202
G _ flue]?
< 7['(271) ‘l/zllfllcor)G/ eXP{ — —— tlulPdu
RY 4
_ 2PPGT ()

Il fllccxo.
ré)

As for J{, we use (15) and (22) and obtain

C 2

(V2mo) B 402
2 2%4—21‘*(@)
—dp el 2
<C,Q2m)~" f”C(X)U/]RdeXP{ 1 lulldu < 7{,(%) Gl flleaxo.

Combining the above estimates for Ji, J{, J{’, we have

ip(s d d d 3 d d 1
|7 < ”fF”(Ld’;”{M (s; ) +2572C,T <%) +2572C,T <%) }05.
2

(23)
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Step 3:  Estimation of J, away from the point. Bounding the first term of J; is
casy: we use (18). For y € X\BZ, dx(q, y) = Cov/2d + 20, /log 1 implies

lg — yll = v/2d + 20, /log L. It follows that
1

J] = | ——

[/5] ‘(«/Ea)d

1 (2d +2)0%log L }
-t dv
SNy fX\Bg exp{ 297 [ f1aV(y)

Q)" *Vol(X)|| fllccx)o (24)

/ Ks(q, ) f (y)dV(y)'
X\B!?

IA

Now we bound the second term of J,. Using (9) again, we have

" 1 ||M||2} ’
Bli= | —— gy
el ‘ (V2mo)d /]Rd\gn exp{ 202 T

Il fllccx / { ||u||2}
< ——=7 exp — S du
(V270) Jjui=cov2d520 (toga1)112 20

d
-9

2
,
=~ flew [ exp{ B 7}#171 "
F(g) r>Cov/2d+2(logs—1)!12 2

C}(2d +2)(logo ™)
— I fllcex expy —
r'(%) r=Cov/2d+2(0g s )2 4

d
-2

IA

2
X exp{ — Z}rdfldr

1-4

2 * e 1 4 102
< — I fllex o2 0expy — —rdr =22 fllecxyo > .
INC)) 0 4

But Cy > 1, so there holds
7 d
121 =221 flleeno.
Combining this with (24), we get

[]2] < {(271)7%\/01()() +2° } I fll Lips)o-

This together with (23) yields the desired result. O

4 Learnability of Gaussians with flexible variances

The generalization error associated with the probability measure p on Z is defined
for f: X — Y as

e = [ creo—yra.
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A special feature of the generalization error with the least square loss function is
ENH—-Ef)=If—- f,,||2L2 . It tells us that the regression function (4) minimizes
pX

the generalization error.

The efficiency of the learning algorithm (6) for most purposes is measured by the
excess generalization error £( f;,) — £(f,) which can be decomposed into the sample
error and the regularization error, see [22,25] (and [8, 23] for more general schemes).
The sample error has been well understood. As to the regularization error, when the
input space is a domain of IR"” (with nonempty interior) and py is the Lebesgue
measure, it has a polynomial decay for f, € Lip(s). But the constraint to X (and px)
is too strong, which excludes the manifold setting. Now by applying Theorem 1, we
can give a satisfactory decay rate for the regularization error in the manifold setting.

Let

fo=arg min - min {E(f) + Al fl3,, }- @5)

0€(0,400) feHk,

As in [22, 25], we can bound the excess generalization error £( f;;,) — E(f,) as
Efo) = Efp) = {EWSa) = EX L)} H{EX(S) = ED} +DG)  (26)

where E*(f) = izl”il ( fx) — yl-)2 and D(1) is the regularization error of the
scheme (6).

Definition 5 The regularization error of the scheme (6) is defined as

D)= inf  inf {E()—ES)+Iflk ) 2> 0.

,00) |

We need to estimate D(A) for our error analysis. Our decay rate will only be
related to the manifold dimension d. Hence when d is much smaller than n, our
estimate is much better than those in the domain setting given in [17, 25].

Theorem 3 Let X be a connected compact C® submanifold of IR" which is isometri-
cally embedded and of dimension d. If f, € Lip(s) for some 0 < s < 1, then

D) < {Cﬁ( + (271)’d(Vol(X))2}|| follLipwh™ YA >0, (27)

Proof Foro € (0, +00), we take functions f, , = I,(f,). Since f, € Lip(s), we know
from Theorem 1 that

| fo.o — Follccxy < Cxll foll Lipesyo®.
Thus
Efo) =€) = fpo = folllz = Cxll FollLip™
By the definition of f, , and the equation

(KJ('7 y)a KU('a Z))Ka = Kcr(ys Z)7
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we have
el = oo [ [ Ko 050 hi@aviavee
< W(V01<X>)2||fp||é(x>. (28)
These yield

’D()b)f lnf {”fpo fpl'i%x+)‘||fp,rr”%(”}

< ael(lgf {CX||fp||Llp(s)02Y—I—)»(Zn)’ (Vol(X)) ||fp||C(X)a*2d}.

_ 2 s
Taklng o = Azwzd we have D(}\) < {C2 || fP”sz(s) + (27‘[) d(VOl(X)) || fp“zC(X)}}\,SﬂI_
This proves Theorem 3. O

To get some error estimates for the algorithm (6), we use a result from [25] which
is stated as follows.

Proposition 4 Let f,; be given by (6). If 0 < A <1 and for some M >0, p(-|x)
is supported on [—M, M] for almost every x € X, then there exists a constant C
independent of m or A such that

~/lo® m\ /4
Bl - %) <C(2EF) + D0, (29)
Choose A = (%) ﬁf"l we get from Theorem 3 and Proposition 4 that
2 -~ 2 —d 2 2 log” m'\
E(|l fo0 — f"”L%x) < 1C+ [Cx + o)~ (Vol(X)) ]Il ol Zipcs) I - (30)

This proves Theorem 2.

5 Approximation ability of a single Gaussian

In this section, we show that the approximation ability of a single Gaussian kernel is
rather weak. This will be proved for a general C* Mercer kernel K.

When X is a domain of IR” with non-empty interior and py dominates the
Lebesgue measure in the sense dpx(x) > c,dx for some c, > 0, the following result
was proved in [9, 19]. The current theorem is stated in a manifold setting. It shows
that to get a polynomial decay of the regularization error with one Gaussian kernel,
the regression function must belong to C*°(X). This in connection with Theorem 3
demonstrates that for many applications the learning algorithm using Gaussian
kernels with flexible variances has advantages over that with a single Gaussian.
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Theorem 4 Let X be a connected compact C* submanifold of IR" which is isomet-
rically embedded and of dimension d. Assume the marginal distribution px satisfies
dpx > c,dV for some positive constant c, and K is a C* Mercer kernel. If

Doy = inf {If = fillzy, +21fl} = 0G5, (31)

forsome 0 < B < 1, then f, € C*(X).

Proof Let p € X. By Proposition 3, there exists a §,, > 0 such that det(gf-)(u) > l

foralue B={x e R?: lull <& } and ¢?(B) is a neighborhood of p in X. By the
assumption dpx > c,dV, for any f € Hg we have

1F= Al = [ (@ = fw) dexw z e, [ (fo0 - ) ave,
X PP (B) ¢P(B)
Then by using the formula (17), we obtain
l f—fp||2L§X ZCp/B(f(qﬁ”(u))—fp(¢”(u)))2 det(g,,)(u)du> Ll fod?—fo0 ¢p||L2(B)

This in connection with (31) implies that

Anf {Ilf o @? = fr 00 1725 + A fllk} = OGP). (32)

Now we restrict K onto ¢”(B) and set K = K|4»()xpr(5)- We know from [1] that
K is a Mercer kernel on ¢P(B) C X satisfying

Igllg = inf{ll fllx : f € Hk, florsy =8 Vg € Hg.

In particular, || flgrp)ll g < ||f||K for any feHk.
Define a Mercer kernel K on B by K(u V) = K(qb”(u) ¢ (v)). Then

Hir={goo?:geHg)={fo¢?: feHk} and |glg=Igeoo’lz VgeHg.

Hence || fo¢?llg = |l flgrmllg < Il fllx for any f € Hg. Combining this with (32),
we find that

it {1h—fyo ¢P 172 5 +AIRIZ) < nf {Il fod? = fro @1 720s) 21 flik} = OGH).

By Theorem 6.2 in [9], this implies that f, o ¢? € C*(B). Since (¢?, B) is a system of
local coordinates around an arbitrary point p € X, we conclude that f,e C*(X). O

Acknowledgements The authors would like to thank the referees for valuable comments and
suggestions. In particular, a simplified proof of Theorem 4 appearing in the revised version was
provided by one referee.

Appendix

In this appendix, we prove Lemma 1, Proposition 2 and Proposition 3.
Lemma 1 might exist in the literature which is not available to the authors. So we
give a complete proof here.
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Proof of Lemma 1 Suppose to the contrary that there is a sequence of pairs of
distinct points {(xx, yx)}ze, such that

dx (X, yk) > kllxi — yell, Vk € IN.

Then

1 1.
lxe — yell < de(xk, Vi) < %dlam(X),

where diam(X) :=sup, .,y dx(x,y) < oo. Since X is compact, the sequences
{xx}72, and {yi};2, have convergent subsequences {xkj}?il,{ ykj}‘]’.i1 converging in

% — 0, we must have
]

(X, dy), hence in IR", to p and p*. But lxk; — yi, |l <
p=rp

Now let us derive a contradiction. Take W,, 8, and C, as in Proposition 3. Find
some 2 < J € IN such that y;, € W, and dx (x;, yx,) <8,/2 for all j>J. Take g = yy;.
Then xi, € By(Bs,2(0)). For any j > J, [lxx; — yx,ll < dx (x,, yk;). Putting his into
(16), we see that

3
7 (dx (e, i) < Cpldx (i, yi)) .

and hence
d (X ) > i
X Xk;» Vi;) = 4C,
which is a contradiction since dy (xx;, yx;) — 0 as j— oo. This proves Lemma 1. O

To illustrate some knowledge on manifolds, we prove Proposition 2 and Proposi-
tion 3 here for completeness.

Proof of Proposition 2 The existence of a strongly convex neighborhood U, is
proved in Chapter 3 of [7] (as Proposition 4.2). By Theorem 3.7 there, there are
another neighborhood W), and a number 8, > 0 such that (a) and (b) hold for W,.
Since &, is a diffeomorphism of B;,(0) onto an open subset & »(Bs,(0)) of X, we
can find some 0 < §* <6 such that the neighborhood &,(B;-(0)) of p is contained
in the open set U, N W,,. Take W, = £, (Bs2(0)). It is a neighborhood of p and,
as a subset of Wp, satisfies (a) and (b). Moreover, its closure equals £, (B,;* 2 (0)) -

&, (Bs<(0)) € U,. Hence (c) also holds. This proves Proposition 2. O

Proof of Proposition 3 Recall that U = {u € R?: |u| < 8p} and the functions
gg-(u) = g;-i;-q (u) are well defined and C*™ on W, x U satisfying gZ-(O) = §;;. Then the
function A(q, u) := det(gg-)(u) is nonnegative, C* on W, x U and satisfies h(q, 0) = 1
for each ¢ € W,. Now both W,, and B = {wuelR: u| < 8,/2} C U are compact
sets. So for every g € W, and every u € B there holds

oh

ou

d 2 /
Ih(g. ) — 1] = |h(q, u) — h(q. 0)| < {Z - ] ul
i=1 C(W,,XB)
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which implies

(g, u) — 1 /
Vg —1| = L= Thie ey = aw =1 = Cylul

172 . .
i1 H b H COW,xB) } is a constant independent of ¢ € W,,. This proves

the inequality (15).
As to the second inequality (16), we do the same and define a vector-valued
function F : W, x U — IR" as

where C/p =

d
F(q7 Li) = (Fl(qa Lt), T Fn(q7 M)) = CDqu (Zule:{> .

i=1

This function is C* on W, x U. Now for g € W, and u € U, denote x= &, (Zl uel)
Then lq — xIP = [ F(q. 0) — F(g. )| = Y1, (Fu(q. ) — Fu(q. 0))". So using (14),
we have

2

n d
dF, ;
dx(q, %) = lIx = qlI” = llu|> =) (Z 5 (@ 0 + Ra(q, u)) (33)

i=1

a=I

where R,(q,u) is a remainder term in the Taylor expansion which can be
bounded as

|Rq (W>|<’ZH S @

To analyze (33), we need to find 2 o Le (4, 0). Towards this end, for i=1,...,d,
choose the curve y (r) = £(elr). Using (12), we have

dboy()|  ddo&yeln|  (0F IF,
< ( )) T _[=0_<8ui (q’o)s”'v 8ui (5170))

0 dt
Hence
P 9 " 3F oF
q — — — = - i
gh0) = <dq)q (aui (q)) ,dd, <8uf (q))>IR" Z oui (q.0 i 0).

a=1

12
lul>,  Yge Wy uecB. (34)
C(W ><B)

But g(0) = §; j, we obtain

ZZ (q, (q Oyu'ul = |lul?

i, j=1 a=1

and hence

2

3 (3 S ow )

n d n
oF, :
= Nul®+23 3 -7 (@ O Rulq. ) + ) (Ra(q, )’

a=1 i=1 a=1
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This in connection with (33) tells us that or ¢ € W, and u € B there holds

|d%(q. %) — llx—ql?| <

222 » " g ouR, (q,u>+Z<R (q.w)?

a=1 i=1 a=1

1/2 n
} lull| Ra (g, )|+ _(Ra(q, w))* .
C(Wp)

a=1

<2Z{

Together with (34) this verifies the inequality (16) with the constant

1/2 1/2
= (qu )
<(x21: 121: o <Wp)} bl KLY C(W,xB)
T 55 3] LI "
a=11i,j=1 Ju'ou C(W,;XB) 2
independent of g € W, C W,,. This proves Proposition 3. O
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