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Abstract Learning function relations or understanding structures of data lying in
manifolds embedded in huge dimensional Euclidean spaces is an important topic in
learning theory. In this paper we study the approximation and learning by Gaussians
of functions defined on a d-dimensional connected compact C∞ Riemannian sub-
manifold of IRn which is isometrically embedded. We show that the convolution with
the Gaussian kernel with variance σ provides the uniform approximation order of
O(σ s) when the approximated function is Lipschitz s ∈ (0, 1]. The uniform normal
neighborhoods of a compact Riemannian manifold play a central role in deriving the
approximation order. This approximation result is used to investigate the regression
learning algorithm generated by the multi-kernel least square regularization scheme
associated with Gaussian kernels with flexible variances. When the regression func-
tion is Lipschitz s, our learning rate is (log2 m)/m)s/(8s+4d) where m is the sample size.
When the manifold dimension d is smaller than the dimension n of the underlying
Euclidean space, this rate is much faster compared with those in the literature. By
comparing approximation orders, we also show the essential difference between
approximation schemes with flexible variances and those with a single variance.
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1 Introduction and main results

Learning theory studies learning of function relations or data structures from sam-
ples. The desired function or data arise from physical or biological systems, engi-
neering problems, financial studies, and many other fields. They can be effectively
modelled or analyzed on an input space X which is often a low-dimensional manifold
embedded in a Euclidean space IRn. In many applications such as gene expression
analysis, it is observed that the dimension n of the underlying Euclidean space is
huge while the intrinsic dimension d of the manifold X is much smaller d << n.
This has led to the hot topic of manifold learning and several important learning
strategies including dimensionality reduction [4, 12], feature selection [6, 18, 21],
semi-supervised learning [3, 21], and learning topological statistics [14].

To model such situations, as in the literature of manifold learning [2, 14, 18],
we assume throughout the paper that X is a d-dimensional connected compact C∞
submanifold of IRn which is isometrically embedded. For detailed definition and
properties, see [5, 7] and the description in Section 2. In particular, we know that X
is a metric space with the metric dX and the inclusion map � : (X, dX) ↪→ (IRn, ‖ · ‖)
is well defined and continuous (actually it is C∞). Here ‖ · ‖ is the norm in IRn.

The purpose of this paper is to investigate the approximation of functions on
Riemannian manifolds by Gaussians and its applications in quantitative analysis
of learning algorithms. The Gaussians form a family of functions with an index
σ ∈ (0,∞) defined for x, y ∈ X or on the whole underlying space IRn by

Kσ (x, y) = exp

{
−‖x − y‖2

2σ 2

}
. (1)

When X has nonempty interior as a subset of IRn(d = n), the approximation of
functions from various function spaces by Gaussians is a classical topic in approxi-
mation theory [11] and its applications in error analysis of learning algorithms are
well understood [17]. When X is a Riemannian submanifold of IRn with dimension
d < n, things are totally different and little is known. In fact, our assumption that the
embedding map � is the inclusion plays an essential role. For a general embedding
map (which always exists according to the Nash Embedding Theorem), we do not
know how to establish similar analysis for the approximation.

We consider the approximation in the space C(X) of continuous functions on X
with the norm ‖ f‖C(X) = maxx∈X | f (x)|. The approximation scheme is given by a
family of linear operators {Iσ : C(X) → C(X)}σ>0 as

Iσ ( f )(x) = 1

(
√

2πσ)
d

∫
X

Kσ (x, y) f (y)dV(y)

= 1

(
√

2πσ)
d

∫
X

exp

{
−‖x − y‖2

2σ 2

}
f (y)dV(y), x ∈ X, (2)
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where V is the Riemannian volume measure of X. For details on the Riemannian
volume measure of a Riemannian manifold, see Section 2. It is a generalization of
the Lebesgue measure in a Euclidean space. A d-dimensional manifold is, roughly
speaking, a topological space which is locally Euclidean of dimension d. This verifies
the use of the power d in the scaling factor 1

(
√

2πσ)
d .

To get explicit approximation orders, we need some smoothness of the approxi-
mated function f . Here we use the Lipschitz smoothness.

Definition 1 Let X be a Riemannian manifold with the metric dX and 0 < s ≤ 1. We
say that a bounded continuous function f on X is in the Lipschitz s space Lip(s) =
Lip(s, X) if there exists a constant C > 0 such that for all x, y ∈ X,

| f (x) − f (y)| ≤ C(dX(x, y))s.

The norm in the space Lip(s) is defined as

‖ f‖Lip(s) := | f |Lip(s) + ‖ f‖C(X)

where | f |Lip(s) is the seminorm

| f |Lip(s) := sup
x�=y∈X

| f (x) − f (y)|
(dX(x, y))s

.

The space Lip(s) is a Banach space. The smoothness of a function f ∈ Lip(s) is
measured by the index s. The bigger the index s is, the smoother the function f is.

Our first main result is the following theorem which will be proved in Section 3.

Theorem 1 Let X be a connected compact C∞ submanifold of IRn which is isomet-
rically embedded and of dimension d. Define Iσ : C(X) → C(X) for σ > 0 by (2). If
f ∈ Lip(s) with 0 < s ≤ 1, then there holds

‖Iσ ( f ) − f‖C(X) ≤ CX‖ f‖Lip(s)σ
s ∀σ > 0, (3)

where CX is a positive constant independent of f or σ .

Due to a phenomenon of saturation, the order of approximation in (3) cannot be
increased to s > 2 on function spaces of higher order Lipschitz smoothness (see [11]),
though extensions to orders with 1 ≤ s < 2 are possible. Convergence rates like (3)
may be established for other function spaces such as Lp(X) and for non-compact
manifolds (see the special example in Proposition 1 below), which is out of the scope
of the paper.

Our second main result is the error analysis for the regression algorithm generated
by the multi-kernel least-square regularization scheme associated with Gaussians
with flexible variance [22] which is an application of Theorem 1 in learning theory.

In regression problems, we assume that the sample z = {(xi, yi)}m
i=1 is indepen-

dently drawn according to a probability measure ρ on Z := X × Y with Y = IR.
The measure ρ can be decomposed into the marginal distribution ρX on X and the
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conditional distribution ρ(·|x) at x ∈ X. The goal of the regression problem is to learn
the regression function

fρ(x) =
∫

Y
ydρ(y|x), x ∈ X (4)

from the sample z by some learning algorithms. The algorithm considered here is a
kernel method.

A Mercer kernel K : X × X → IR is a continuous and symmetric function which is
positive semidefinite in the sense that for any finite set of points {x1, · · · , x�} ⊆ X, the
matrix (K(xi, x j))

�
i, j=1 is positive semidefinite. The reproducing kernel Hilbert space

(RKHS) HK associated with the kernel K is defined [1] to be the completion of
the linear span of the set of functions {Kx = K(x, ·) : x ∈ X} with the inner product
〈·, ·〉K given by 〈Kx, Ky〉K = K(x, y). Its reproducing property plays a special role in
learning theory:

〈Kx, f 〉K = f (x), x ∈ X, f ∈ HK. (5)

For each σ ∈ (0,∞), the Gaussian (1) on X is a Mercer kernel [9] and the
corresponding RKHS is denoted by HKσ

with associated norm ‖ · ‖Kσ
.

We consider a multi-kernel regularization scheme. It is a least-square regularized
algorithm for the regression problem associated with the Gaussians with flexible
variance (0 < σ < ∞) defined by

fz,λ := arg min
σ∈(0,+∞)

min
f∈HKσ

{
1

m

m∑
i=1

(
f (xi) − yi

)2 + λ‖ f‖2
Kσ

}
. (6)

Here λ > 0 is called the regularization parameter.

Theorem 2 Let X be a connected compact C∞ submanifold of IRn which is isomet-
rically embedded and of dimension d. Let fz,λ be defined by (6) with a sample z =
{(xi, yi)}m

i=1 independently drawn according to ρ. If fρ ∈ Lip(s) for some 0 < s ≤ 1,

then by taking λ = ( log2 m
m

) s+d
8s+4d , we have

IEz∈Z m

{
‖ fz,λ − fρ‖2

L2
ρX

}
= O

((
log2 m

m

) s
8s+4d

)
. (7)

The least-square regularization scheme with one Mercer kernel has been well
understood in learning theory for various purposes including regression and classifi-
cation [10, 13, 20]. But the approximation ability of the regularization scheme with
one fixed Gaussian is weak, as shown in [19] and in Section 5 of this paper.

When all the Gaussians with σ ∈ (0,∞) are included in the multi-kernel regular-
ization scheme (6), the approximation ability of the scheme and hence the learning
rates are greatly improved. This has been studied recently in [17, 25] and [22] for
classification. The sample error for the algorithm (6) was estimated in [25] by means
of bounding empirical covering numbers for the union of unit balls of the correspond-
ing infinitely many reproducing kernel Hilbert spaces. When ρX is the Lebesgue
measure, X is a domain with Lipschitz boundary of IRn meaning that d = n, and
fρ lies in the Sobolev space Hs(X), some approximation error estimates by means of
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the Fourier transform on IRn led to IEz∈Z m{‖ fz,λ − fρ‖2
L2(X)

} = O
(
(log m)1/2m− s

8s+2n
)

in [25] and learning rates with confidence in [17]. These learning rates are better
than (7) in the case d = n. However, in our current setting the input space X is a
Riemannian submanifold of IRn with dimension d. The Fourier transform technique
cannot be used for our estimates of approximation orders, which is the key difficulty
we overcome. So the learning rate stated in Theorem 2 is completely new. When the
manifold dimension d is much smaller than n, the index s

8s+4d appearing in (7) is much
better than the index s

8s+2n in [17, 25] if we regard X as a subset of IRn. As in the case
of domains (d = n), it would be interesting to derive optimal or almost optimal rates
for the learning algorithm (6).

Our ideas for deriving quantitative analysis for learning algorithms on
Riemannian manifolds can be extended to other problems such as online learning
[24] and feature selection [15].

2 Ideas and knowledge on Riemannian manifolds

In this section, we give some ideas on the approximation by Gaussians for the proof
of Theorem 1 and then introduce two important concepts for Riemannian manifolds:
exponential map and uniform normal neighborhoods which will play an important
role in our proof.

2.1 Some ideas from Gaussian approximation on IRn

Let us recall the following standard and well-known result [11] for approximation by
Gaussians on the whole Euclidean space IRn. We state it and give its proof in order
to illustrate general ideas for deriving our error bounds.

Proposition 1 If f ∈ Lip(s, IRn) for some 0 < s ≤ 1, then for every σ > 0, we have

sup
x∈IRn

∣∣∣∣ 1

(
√

2πσ)
n

∫
IRn

exp

{
−‖x − y‖2

2σ 2

}
f (y)dy − f (x)

∣∣∣∣ ≤
{

2s/2 	( n+s
2 )

	( n
2 )

| f |Lip(s)

}
σ s,

where 	 is the Gamma function given for α ∈ (0,∞) by 	(α) = ∫ ∞
0 rα−1e−rdr.

Proof Let x ∈ IRn. Since

1

(
√

2πσ)
n

∫
IRn

exp

{
−‖x − y‖2

2σ 2

}
dy = 1, (8)

we can express f (x) as

f (x) = 1

(
√

2πσ)
n

∫
IRn

exp

{
−‖x − y‖2

2σ 2

}
f (x)dy.
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It follows from the definition of the Lipschitz seminorm | f |Lip(s) that

∣∣∣∣ 1

(
√

2πσ)
n

∫
IRn

exp

{
−‖x − y‖2

2σ 2

}
f (y)dy − f (x)

∣∣∣∣
≤ 1

(
√

2πσ)
n

∫
IRn

exp

{
−‖x − y‖2

2σ 2

}
| f (y) − f (x)|dy

≤ 1

(
√

2πσ)
n

∫
IRn

exp

{
−‖x − y‖2

2σ 2

}
‖x − y‖sdy| f |Lip(s).

Recall that by spherical coordinates for IRn, for a radial function h(‖y‖) on IRn with
a univariate function h : IR → IR, there holds

∫
IRn

h(‖y‖)dy = 2πn/2

	(n/2)

∫ ∞

0
h(r)rn−1dr. (9)

Applying (9) to the function h(r) = rs exp{− r2

2σ 2 }, we have

∣∣∣∣ 1

(
√

2πσ)
n

∫
IRn

exp

{
−‖x − y‖2

2σ 2

}
f (y)dy − f (x)

∣∣∣∣
≤
{

2πn/2

	(n/2)

1

(
√

2πσ)
n

∫ ∞

0
rn−1+s exp

{
− r2

2σ 2

}
dr
}

| f |Lip(s)

= 	( n+s
2 )

	( n
2 )

2s/2σ s| f |Lip(s).

This bound is independent of x ∈ IRn, so the proposition is proved. 
�

If we divide IRn into two parts: a neighborhood Bσ (x) of x with suitable radius
and its complement IRn \ Bσ (x), we see two key features caused by the fast decay of
the Gaussian: the first is the fast decay of the kernel Kσ (x, y) when ‖x − y‖ becomes
large making

∫
IRn\Bσ (x)

Kσ (x, y)‖x − y‖sdy = O(σ s); the second is that

1

(
√

2πσ)
n

∫
Bσ (x)

exp

{
−‖x − y‖2

2σ 2

}
dy ≈ 1. (10)

Such a neighborhood can be chosen as Bσ (x)={y∈IRn :‖x−y‖≤√
2n+2σ

√
log(1/σ)}.

Two key features allow us to adapt the proof of Proposition 1 to a manifold setting:
choosing suitable appropriate atlas (Ui, φi) on which the Riemannian volume mea-
sure corresponds to a good approximation of the Lebesgue measure on the mapped
region on IRd; then computing approximately in the small region of IRd. This proce-
dure requires some good properties of the atlas (Ui, φi) of the manifold, which leads
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to two important concepts in Riemannian manifold: exponential map and uniform
normal neighborhoods introduced into learning theory in e.g. [2, 14].

2.2 Riemannian structures

A tangent vector v at p ∈ X is a linear functional on C∞(X) satisfying v( fg) =
v( f )g(p) + f (p)v(g). Denote by Tp(X) the tangent space consisting of all tangent
vectors of X at p. The C∞ map � : X �→ IRn induces a map d�p : Tp(X) �→
T�(p)(IRn) for each p ∈ X expressed as

(
d�p(v)

)
( f ) = v( f ◦ �), v ∈ Tp(X), f ∈ C∞(IRn).

Many quantities of Riemannian manifolds (such as area and length) are deter-
mined by Riemannian structures.

Definition 2 A Riemannian structure g on a C∞ manifold X is an inner product gp

on each Tp(X) such that, for each pair of C∞ vector fields Y and Z , the function
from X to IR given by

p �→ gp(Yp, Z p)

is C∞. Here for a vector field Y : C∞(X) �→ C∞(X), Yp is the tangent vector defined
by Yp f = Y f (p) for f ∈ C∞(X). If X is isometrically embedded in IRn by the
inclusion map � : X �→ IRn, then gp has a special form given by

gp(Yp, Z p) = 〈d�p(Yp), d�p(Z p)〉IRn . (11)

The special feature of the isometrically embedded manifold X ↪→ IRn is that the
inner product on the tangent space T�(p)(IRn) is identical with that in IRn.

Let us illustrate the concepts of tangent space and Riemannian structure in terms
of local coordinates.

Let φ : U ⊂ IRd → X be a system of coordinates around p and q = φ(x1, x2, · · · ,

xd) ∈ φ(U) ⊂ X with (x1, x2, · · · , xd) ∈ U . Let ψi(t) = φ(x1, · · · , xi−1, xi + t, xi+1,

· · · , xd) for t ∈ (−ε, ε) with sufficiently small ε > 0, then
(

∂
∂xi (q)

)
( f ) := d( f◦ψi)

dt

∣∣∣∣
t=0

gives a tangent vector ∂
∂xi (q) in the tangent space Tq(X) and

{
∂

∂xi (q)
}d

i=1 forms a basis
of Tq(X). Under this basis, the map d�q can be determined by

d�q

(
∂

∂xi
(q)

)
= d(� ◦ ψi)

dt

∣∣∣∣
t=0

, i = 1, · · · , d. (12)

The Riemannian structure g of the isometrically embedded manifold X can be
expressed under this basis as

gφ

ij(x1, · · · , xd) :=
〈
d�q

(
∂

∂xi
(q)

)
, d�q

(
∂

∂x j
(q)

)〉
IRn

, i, j = 1, · · · , d. (13)
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In fact, any pair of tangent vectors v, w ∈ Tq(X) can be written as v = ∑d
i=1 vi ∂

∂xi (q)

and w = ∑d
i=1 wi ∂

∂xi (q). In this form, the inner product (11) equals

gq(v, w) =
d∑

i, j=1

viw jgq

(
∂

∂xi
(q),

∂

∂x j
(q)

)

=
d∑

i, j=1

viw j
〈
d�q

(
∂

∂xi
(q)

)
, d�q

(
∂

∂x j
(q)

)〉
IRn

=
d∑

i, j=1

viw jgφ

ij(x1, · · · , xd).

The function gφ

ij which is C∞ on U is called the local representation of the
Riemannian structure in the coordinate system (U, φ).

2.3 Exponential map and uniform normal neighborhoods

To understand the local structure we use the concept of exponential map based on
geodesics which are special curves satisfying some ordinary differential equations,
for details, see [7].

Definition 3 For p ∈ X and v ∈ Tp(X), let γ (t, p, v), t > 0, be the geodesic satisfying
γ (0, p, v) = p and γ ′(0, p, v) = v. The exponential map Ep : Tp(X) → X is defined
by Ep(v) = γ (1, p, v).

Recall that a Riemannian structure gives an inner product gq hence the metric
on Tq(X): |v| = √

gq(v, v). A minimizing geodesic joining two points p, q ∈ X is
a geodesic γ (t), t0 ≤ t ≤ t1, having the minimum length

∫ t1
t0

|γ ′(t)|dt among all geo-
desics joining p and q. It carries the tangent space Tp(X) at p to the tangent
space Tγ (t)(X) at γ (t) ∈ X smoothly by parallel transport [7]: v ∈ Tp(X) �→ vγ (t) ∈
Tγ (t)(X). A special feature of this parallel transport is that it keeps the inner product:
gγ (t)(v

γ (t), wγ (t)) = gp(v,w),∀ v, w ∈ Tp(X). In particular, gq(v
q, wq) = gp(v, w).

By [7], we know that for each p ∈ X, there exists a strongly convex neighborhood
U p of p, that is, for any two points q1, q2 in the closure Up of Up, there exists a unique
minimizing geodesic γ joining q1 and q2 whose interior is contained in Up.

Choose an orthonormal basis {e1, e2, · · · , ed} of Tp(X), then for each q ∈ Up, the
set of tangent vectors {eq

1, eq
2, · · · , eq

d}, moved by parallel transport from p to q along
the unique minimizing geodesic, forms an orthonormal basis of Tq(X). In addition,
this frame depends smoothly on q.

In order to study the structure in a small neighborhood of each q ∈ Up, we need
the concept of uniform normal neighborhood of p. Denote Bδ(0) = {v ∈ Tq(X) :
|v| < δ} as the ball of Tq(X) centered at 0 with radius δ.

Definition 4 An open set U ⊂ X is called uniformly normal if there exists some δ > 0
such that U ⊆ Eq(Bδ(0)) for every q ∈ U .
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The following proposition which will be proved in the Appendix tells us the
existence of a special uniformly normal neighborhood.

Proposition 2 For every p ∈ X there exist a neighborhood Wp and a number δp > 0
such that the following conditions hold:

(a) For every q ∈ Wp, the map Eq : Bδp(0) ⊂ Tq(X) → X is a diffeomorphism on
Bδp(0);

(b) Wp is uniformly normal with respect to δp, that is, Wp ⊆ Eq(Bδp(0)) for every
q ∈ Wp;

(c) The closure of Wp is contained in a strongly convex neighborhood Up of p.

Since we have an orthonormal basis {eq
1, · · · , eq

d} of Tq(X) for each q ∈ Wp,
according to (a) of Proposition 2, the map φq from U = {u ∈ IRd : ‖u‖ < δp} ⊂ IRd

to X defined by φq(u1, · · · , ud) = Eq(
∑d

i=1 uieq
i ) gives a system of coordinates around

q. We call such coordinates q-normal coordinates. Under these normal coordinates,
gq

ij(u) := gφq

ij (u) is well defined for q ∈ Wp and u ∈ U , and is C∞ as a function on
Wp × U . It satisfies gq

ij(0) = δij: according to the definition of ∂
∂ui (q) by means of

the local coordinates (U, φq) and φq(0, · · · , 0, t, 0, · · · , 0) = Eq(te
q
i ), for f ∈ C∞(X)

there holds
(

∂
∂ui (q)

)
( f ) = d( f◦Eq(teq

i ))

dt

∣∣
t=0, but Eq(te

q
i ) = γ (1, q, teq

i ) = γ (t, q, eq
i ), so we

have d( f◦Eq(teq
i ))

dt

∣∣
t=0 = d( f◦γ (t,q,eq

i ))

dt

∣∣
t=0 = eq

i ( f ). Thus { ∂
∂ui (q) = eq

i }d
i=1 is an orthonormal

basis on Tq(X). Hence gq
ij(0) = gq(

∂
∂ui (q), ∂

∂u j (q)) = gq(e
q
i , eq

j ) = δij.

For u ∈ U , let v = ∑d
i=1 uieq

i . By (a) of Proposition 2, there exists a minimizing
geodesic γ (t, q, v), 0 ≤ t ≤ 1, such that γ (0, q, v) = q, γ ′(0, q, v) = v and γ (1, q, v) =
Eq(v). Hence dX(q, Eq(v)) = ∫ 1

0 |γ ′(t, q, v)|dt = ∫ 1
0 |γ ′(0, q, v)|dt = ∫ 1

0 |v|dt = |v| =
‖u‖. That is,

dX

(
q, Eq

(
d∑

i=1

uieq
i

))
= ‖u‖, ∀‖u‖ < δp. (14)

From the above discussion we have the following proposition.

Proposition 3 For p ∈ X, choose Wp and δp as in Proposition 2. For each q ∈ Wp,
choose q-normal coordinates (U, φq) and the corresponding local representation gq

ij
of the Riemannian structure as above. Then the following two bounds hold with a
constant Cp independent of q ∈ Wp:∣∣∣∣

√
det(gq

ij)(u
1, · · · , ud) − 1

∣∣∣∣ ≤ Cp‖u‖, ∀‖u‖ ≤ δp/2, (15)

∣∣∣(dX(q, x)
)2 − ‖q − x‖2

∣∣∣ ≤ Cp
(
dX(q, x)

)3
, ∀x ∈ Eq(Bδp/2(0)). (16)

This result has been proved with δp/2 replaced by δp as Proposition 2.2 in [14]. For
completeness, we will give a proof in the appendix.

Now we can give the Riemannian volume measure. It is a standard measure on the
Riemannian manifold which generalizes the Lebesgue measure of Euclidean spaces
and has a clear geometric meaning: for any U ⊂ X,

∫
U dV = Vol(U). Moreover [7],
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if (U, φ) is a system of coordinates with φ : U ⊂ IRd �→ X, then for any measurable
function f , ∫

φ(U)

f dV =
∫

U
f (φ(u))

√
det(gφ

ij)(u
1, · · · , ud)du1 · · · dud. (17)

3 Approximation by Gaussians

To prove our first main result, we need the following lemma.

Lemma 1 Let X be a connected compact C∞ submanifold of IRn which is isometri-
cally embedded. Then there exists a positive constant C0 ≥ 1 such that

dX(x, y) ≤ C0‖x − y‖, ∀x, y ∈ X. (18)

Now we are in a position to prove Theorem 1.

Proof of Theorem 1 Let Wp, δp and Cp as in Proposition 3. Since X ⊆ ∪p∈X Wp and
X is compact, there exists a finite subset P of X such that X ⊆ ∪p∈PWp. Then
‖Iσ ( f ) − f‖C(X) = maxp∈P ‖Iσ ( f ) − f‖C(Wp). Also, for σ ≥ σ0,

‖Iσ ( f )‖C(X) ≤ 1

(
√

2πσ)d

∫
X

‖ f‖C(X)dV = Vol(X)

(
√

2πσ)d
‖ f‖C(X) ≤ Vol(X)

(
√

2πσ0)d
‖ f‖C(X).

So (3) is verified with CX = max
{(Vol(X)

(
√

2πσ0)d + 1
)
σ−s

0 , maxp∈P CX,p
}

if we can prove for
some σ0 > 0 that

‖Iσ ( f ) − f‖C(Wp) ≤ CX,p‖ f‖Lip(s)σ
s, ∀0 < σ < σ0, p ∈ P . (19)

Take δ∗ = minp∈P
{

min{ δp

2 , 1
2Cp

}} > 0 and C0 as in (18). Take 0 < σ0 < 1
2 such that

C0
√

2d + 2σ0

√
log σ−1

0 < δ∗. We prove (19) in three steps. Let p ∈ P and 0 < σ < σ0.

Step 1: Decomposition. Let q ∈ Wp. Choose

Bq
σ :=

{
x ∈ X : dX(q, x) < C0

√
2d + 2σ

√
log

1

σ

}
.

Since Eq is a diffeomorphism on Bδ∗(0), we see from (14) that Bq
σ ⊂

Eq(Bδ∗(0)) and Bq
σ = {Eq(

∑d
i=1 uieq

i ) : u ∈ B̃σ } where

B̃σ :=
{

u ∈ IRd : ‖u‖ < C0

√
2d + 2σ

√
log

1

σ

}
. (20)

Denote φq(u)=Eq(
∑d

i=1 uieq
i ) for u=(u1, . . . , ud) ∈ IRd. Then Bq

σ =φq(B̃q
σ ).

Separating the domain X into two parts, we have

Iσ ( f )(q) = 1

(
√

2πσ)d

∫
Bq

σ

Kσ (q, y) f (y)dV(y)

+ 1

(
√

2πσ)d

∫
X\Bq

σ

Kσ (q, y) f (y)dV(y).
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By (17), the first term on the above right hand side equals

1

(
√

2πσ)d

∫
B̃σ

exp

{
− ‖q − φq(u)‖

2σ 2

}
f (φq(u))

√
det(gq

ij)(u)du.

Using (8), we can decompose f (q) as

f (q) = 1

(
√

2πσ)d

∫
B̃σ

exp

{
− ‖u‖2

2σ 2

}
f (q)du

+ 1

(
√

2πσ)d

∫
IRd\B̃σ

exp

{
− ‖u‖2

2σ 2

}
f (q)du.

Combining the above decomposition, we have

Iσ ( f )(q) − f (q) = J1 + J2 (21)

where

J1 = 1

(
√

2πσ)d

∫
B̃σ

{
exp

{
− ‖q − φq(u)‖2

2σ 2

}
f (φq(u))

√
det(gq

ij)(u)

− exp

{
− ‖u‖2

2σ 2

}
f (q)

}
du,

J2 = 1

(
√

2πσ)d

∫
X\Bq

σ

Kσ (q, y) f (y)dV(y)

− 1

(
√

2πσ)d

∫
IRd\B̃σ

exp

{
− ‖u‖2

2σ 2

}
f (q)du.

Step 2: Estimation of J1 for the error in a neighborhood. We separate the error J1

further as

J1 = 1

(
√

2πσ)d

∫
B̃σ

exp

{
− ‖u‖2

2σ 2

}[
f (φq(u)) − f (q)

]
du

+ 1

(
√

2πσ)d

∫
B̃σ

[
exp

{
− ‖q − φq(u)‖2

2σ 2

}

− exp

{
− ‖u‖2

2σ 2

}]
f (φq(u))du

+ 1

(
√

2πσ)d

∫
B̃σ

exp

{
− ‖q − φq(u)‖2

2σ 2

}
f (φq(u))

(√
det gq

ij(u) − 1
)

du

:= J′
1 + J′′

1 + J′′′
1 .

Since f ∈ Lip(s), We know that | f (φq(u))− f (q)|≤| f |Lip(s) (dX(φq(u), q))
s .

By (14), for u ∈ B̃σ , dX(q, φq(u)) = ‖u‖ < δ∗ ≤ 1
2Cp

. So by (16),

∣∣‖φq(u) − q‖2 − ‖u‖2
∣∣ ≤ 1

2
‖u‖2, ∀u ∈ B̃q

σ . (22)
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It follows that ‖φq(u) − q‖ ≤ 2‖u‖. Thus

|J′
1| ≤ | f |Lip(s)

(
√

2πσ)d

∫
B̃σ

exp

{
− ‖u‖2

2σ 2

}
2s‖u‖sdu.

By a change of variables u
σ

and (9), we have

|J′
1|≤(2π)−d/2| f |Lip(s)2

sσ s
∫

IRd
exp

{
− ‖u‖2

2

}
‖u‖sdu = 2

3s
2 	( s+d

2 )

	( d
2 )

| f |Lip(s)σ
s.

Consider the term J′′
1 . Applying (14) and (16) of Proposition 3, we know that

for u ∈ B̃σ , φq(u) ∈ Eq(Bδp/2(0)) and

∣∣d2
X(q, φq(u)) − ‖q − φq(u)‖2

∣∣ = ∣∣‖u‖2 − ‖q − φq(u)‖2
∣∣

≤ Cpd3
X(q, φq(u)) = Cp‖u‖3.

It follows from (16) and the elementary inequality |e−a − e−b | ≤
|a − b | max{e−a, e−b } (valid for any a, b > 0) that

|J′′
1 | ≤ ‖ f‖C(X)

(
√

2πσ)d

∫
B̃σ

∣∣∣∣ exp

{
− ‖q − φq(u)‖2

2σ 2

}
− exp

{
− ‖u‖2

2σ 2

}∣∣∣∣du

≤ ‖ f‖C(X)

(
√

2πσ)d

∫
B̃σ

max

{
exp

{
− ‖q − φq(u)‖2

2σ 2

}
, exp

{
− ‖u‖2

2σ 2

}}
Cp‖u‖3

2σ 2
du.

This in connection with (22) implies

|J′′
1 | ≤ ‖ f‖C(X)

(
√

2πσ)d

∫
B̃σ

exp

{
− ‖u‖2

4σ 2

}
Cp‖u‖3

2σ 2
du

≤ Cp

2
(2π)−d/2‖ f‖C(X)σ

∫
IRd

exp

{
− ‖u‖2

4

}
‖u‖3du

= 2
d
2 +2Cp	( d+3

2 )

	( d
2 )

‖ f‖C(X)σ.

As for J′′′
1 , we use (15) and (22) and obtain

|J′′′
1 | ≤ Cp‖ f‖C(X)

(
√

2πσ)d

∫
B̃σ

exp

{
− ‖u‖2

4σ 2

}
‖u‖du

≤Cp(2π)−d/2‖ f‖C(X)σ

∫
IRd

exp

{
−‖u‖2

4

}
‖u‖du≤ 2

d
2 +2	( d+1

2 )

	( d
2 )

Cp‖ f‖C(X)σ.

Combining the above estimates for J′
1, J′′

1 , J′′′
1 , we have

|J1| ≤ ‖ f‖Lip(s)

	( d
2 )

{
4	

(
s + d

2

)
+ 2

d
2 +2Cp	

(
d + 3

2

)
+ 2

d
2 +2Cp	

(
d + 1

2

)}
σ s.

(23)
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Step 3: Estimation of J2 away from the point. Bounding the first term of J2 is

easy: we use (18). For y ∈ X\Bq
σ , dX(q, y) ≥ C0

√
2d + 2σ

√
log 1

σ
implies

‖q − y‖ ≥ √
2d + 2σ

√
log 1

σ
. It follows that

|J′
2| :=

∣∣∣∣ 1

(
√

2πσ)d

∫
X\Bq

σ

Kσ (q, y) f (y)dV(y)

∣∣∣∣

≤ 1

(
√

2πσ)d

∫
X\Bq

σ

exp

{
− (2d + 2)σ 2 log 1

σ

2σ 2

}
| f (y)|dV(y)

≤ (2π)−d/2Vol(X)‖ f‖C(X)σ . (24)

Now we bound the second term of J2. Using (9) again, we have

|J′′
2 | :=

∣∣∣∣ 1

(
√

2πσ)d

∫
IRd\B̃σ

exp

{
− ‖u‖2

2σ 2

}
f (q)du

∣∣∣∣
≤ ‖ f‖C(X)

(
√

2πσ)d

∫
‖u‖≥C0

√
2d+2σ(log σ−1)1/2

exp

{
− ‖u‖2

2σ 2

}
du

= 21− d
2

	( d
2 )

‖ f‖C(X)

∫
r≥C0

√
2d+2(log σ−1)1/2

exp

{
− r2

2

}
rd−1dr

≤ 21− d
2

	( d
2 )

‖ f‖C(X)

∫
r≥C0

√
2d+2(log σ−1)1/2

exp

{
− C2

0(2d + 2)(log σ−1)

4

}

× exp

{
− r2

4

}
rd−1dr

≤ 21− d
2

	( d
2 )

‖ f‖C(X)

∫ ∞

0
σ

d+1
2 C2

0 exp

{
− r2

4

}
rd−1dr = 2

d
2 ‖ f‖C(X)σ

d+1
2 C2

0 .

But C0 ≥ 1, so there holds

|J′′
2 | ≤ 2

d
2 ‖ f‖C(X)σ.

Combining this with (24), we get

|J2| ≤
{
(2π)−

d
2 Vol(X) + 2

d
2

}
‖ f‖Lip(s)σ.

This together with (23) yields the desired result. 
�

4 Learnability of Gaussians with flexible variances

The generalization error associated with the probability measure ρ on Z is defined
for f : X → Y as

E( f ) =
∫

Z
( f (x) − y)2dρ.
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A special feature of the generalization error with the least square loss function is
E( f ) − E( fρ) = ‖ f − fρ‖2

L2
ρX

. It tells us that the regression function (4) minimizes

the generalization error.
The efficiency of the learning algorithm (6) for most purposes is measured by the

excess generalization error E( fz,λ) − E( fρ) which can be decomposed into the sample
error and the regularization error, see [22, 25] (and [8, 23] for more general schemes).
The sample error has been well understood. As to the regularization error, when the
input space is a domain of IRn (with nonempty interior) and ρX is the Lebesgue
measure, it has a polynomial decay for fρ ∈ Lip(s). But the constraint to X (and ρX)
is too strong, which excludes the manifold setting. Now by applying Theorem 1, we
can give a satisfactory decay rate for the regularization error in the manifold setting.

Let

fλ := arg min
σ∈(0,+∞)

min
f∈HKσ

{
E( f ) + λ‖ f‖2

HKσ

}
. (25)

As in [22, 25], we can bound the excess generalization error E( fz,λ) − E( fρ) as

E( fz,λ) − E( fρ) ≤ {{
E( fz,λ) − E z( fz,λ)

} + {
E z( fλ) − E( fλ)

}} + D(λ) (26)

where E z( f ) = 1
m

∑m
i=1

(
f (xi) − yi

)2 and D(λ) is the regularization error of the
scheme (6).

Definition 5 The regularization error of the scheme (6) is defined as

D(λ) = inf
σ∈(0,∞)

inf
f∈Hσ

{
E( f ) − E( fρ) + λ‖ f‖2

Kσ

}
, λ > 0.

We need to estimate D(λ) for our error analysis. Our decay rate will only be
related to the manifold dimension d. Hence when d is much smaller than n, our
estimate is much better than those in the domain setting given in [17, 25].

Theorem 3 Let X be a connected compact C∞ submanifold of IRn which is isometri-
cally embedded and of dimension d. If fρ ∈ Lip(s) for some 0 < s ≤ 1, then

D(λ) ≤
{

C2
X + (2π)−d(Vol(X))2

}
‖ fρ‖2

Lip(s)λ
s

s+d ∀λ > 0. (27)

Proof For σ ∈ (0,+∞), we take functions fρ,σ = Iσ ( fρ). Since fρ ∈ Lip(s), we know
from Theorem 1 that

‖ fρ,σ − fρ‖C(X) ≤ CX‖ fρ‖Lip(s)σ
s.

Thus

E( fρ,σ ) − E( fρ) = ‖ fρ,σ − fρ‖2
L2

ρX
≤ C2

X‖ fρ‖2
Lip(s)σ

2s.

By the definition of fρ,σ and the equation

〈Kσ (·, y), Kσ (·, z)〉Kσ
= Kσ (y, z),
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we have

‖ fρ,σ ‖2
Kσ

= 1

(
√

2πσ)2d

∫
X

∫
X

Kσ (y, z) fρ(y) fρ(z)dV(y)dV(z)

≤ 1

(
√

2πσ)2d

(
Vol(X)

)2‖ fρ‖2
C(X). (28)

These yield

D(λ) ≤ inf
σ∈(0,∞)

{
‖ fρ,σ − fρ‖2

L2
ρX

+ λ‖ fρ,σ ‖2
Kσ

}

≤ inf
σ∈(0,∞)

{
C2

X‖ fρ‖2
Lip(s)σ

2s + λ
(
2π)−d(Vol(X)

)2‖ fρ‖2
C(X)σ

−2d
}
.

Taking σ = λ
1

2s+2d , we have D(λ) ≤ {
C2

X‖ fρ‖2
Lip(s) + (

2π)−d
(
Vol(X)

)2‖ fρ‖2
C(X)

}
λ

s
s+d .

This proves Theorem 3. 
�

To get some error estimates for the algorithm (6), we use a result from [25] which
is stated as follows.

Proposition 4 Let fz,λ be given by (6). If 0 < λ ≤ 1 and for some M > 0, ρ(·|x)

is supported on [−M, M] for almost every x ∈ X, then there exists a constant C̃
independent of m or λ such that

IE
(‖ fz,λ − fρ‖2

L2
ρX

) ≤ C̃
(

log2 m
mλ4

)1/4

+ D(λ). (29)

Choose λ = ( log2 m
m

) s+d
8s+4d , we get from Theorem 3 and Proposition 4 that

IE
(‖ fz,λ − fρ‖2

L2
ρX

) ≤
{

C̃ + [
C2

X + (2π)−d(Vol(X)
)2]‖ fρ‖2

Lip(s)

}(
log2 m

m

) s
8s+4d

. (30)

This proves Theorem 2.

5 Approximation ability of a single Gaussian

In this section, we show that the approximation ability of a single Gaussian kernel is
rather weak. This will be proved for a general C∞ Mercer kernel K.

When X is a domain of IRn with non-empty interior and ρX dominates the
Lebesgue measure in the sense dρX(x) ≥ cρdx for some cρ > 0, the following result
was proved in [9, 19]. The current theorem is stated in a manifold setting. It shows
that to get a polynomial decay of the regularization error with one Gaussian kernel,
the regression function must belong to C∞(X). This in connection with Theorem 3
demonstrates that for many applications the learning algorithm using Gaussian
kernels with flexible variances has advantages over that with a single Gaussian.
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Theorem 4 Let X be a connected compact C∞ submanifold of IRn which is isomet-
rically embedded and of dimension d. Assume the marginal distribution ρX satisfies
dρX ≥ cρdV for some positive constant cρ and K is a C∞ Mercer kernel. If

D(λ) = inf
f∈HK

{‖ f − fρ‖2
L2

ρX
+ λ‖ f‖2

K

} = O(λβ), (31)

for some 0 < β ≤ 1, then fρ ∈ C∞(X).

Proof Let p ∈ X. By Proposition 3, there exists a δ′
p > 0 such that

√
det(gp

ij)(u) > 1
2

for all u ∈ B = {x ∈ IRd : ‖u‖ ≤ δ′
p} and φ p(B) is a neighborhood of p in X. By the

assumption dρX ≥ cρdV, for any f ∈ HK we have

‖ f − fρ‖2
L2

ρX
≥
∫

φ p(B)

(
f (x) − fρ(x)

)2
dρX(x) ≥ cρ

∫
φ p(B)

(
f (x) − fρ(x)

)2
dV(x).

Then by using the formula (17), we obtain

‖ f− fρ‖2
L2

ρX
≥cρ

∫
B

(
f (φ p(u))− fρ(φ p(u))

)2
√

det(gφ

ij)(u)du≥ cρ

2
‖ f ◦ φ p− fρ ◦ φ p‖2

L2(B).

This in connection with (31) implies that

inf
f∈HK

{‖ f ◦ φ p − fρ ◦ φ p‖2
L2(B)

+ λ‖ f‖2
K

} = O(λβ). (32)

Now we restrict K onto φ p(B) and set K̃ = K|φ p(B)×φ p(B). We know from [1] that
K̃ is a Mercer kernel on φ p(B) ⊂ X satisfying

‖g‖K̃ = inf{‖ f‖K : f ∈ HK, f |φ p(B) = g} ∀g ∈ HK̃.

In particular, ‖ f |φ p(B)‖K̃ ≤ ‖ f‖K for any f ∈ HK.
Define a Mercer kernel K̂ on B by K̂(u, v) = K̃(φ p(u), φ p(v)). Then

HK̂ = {g ◦ φ p : g ∈ HK̃} = { f ◦ φ p : f ∈ HK} and ‖g‖K̃ = ‖g ◦ φ p‖K̂ ∀g ∈ HK̃.

Hence ‖ f ◦ φ p‖K̂ = ‖ f |φ p(B)‖K̃ ≤ ‖ f‖K for any f ∈ HK. Combining this with (32),
we find that

inf
h∈HK̂

{‖h− fρ ◦ φ p‖2
L2(B)

+λ‖h‖2
K̂

}≤ inf
f∈HK

{‖ f ◦ φ p− fρ ◦ φ p‖2
L2(B)

+λ‖ f‖2
K

}= O(λβ).

By Theorem 6.2 in [9], this implies that fρ ◦ φ p ∈ C∞(B). Since (φ p, B) is a system of
local coordinates around an arbitrary point p∈ X, we conclude that fρ ∈C∞(X). 
�
Acknowledgements The authors would like to thank the referees for valuable comments and
suggestions. In particular, a simplified proof of Theorem 4 appearing in the revised version was
provided by one referee.

Appendix

In this appendix, we prove Lemma 1, Proposition 2 and Proposition 3.
Lemma 1 might exist in the literature which is not available to the authors. So we

give a complete proof here.
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Proof of Lemma 1 Suppose to the contrary that there is a sequence of pairs of
distinct points {(xk, yk)}∞k=1 such that

dX(xk, yk) > k‖xk − yk‖, ∀k ∈ IN.

Then

‖xk − yk‖ <
1

k
dX(xk, yk) ≤ 1

k
diam(X),

where diam(X) := supx�=y∈X dX(x, y) < ∞. Since X is compact, the sequences
{xk}∞k=1 and {yk}∞k=1 have convergent subsequences {xk j}∞j=1,{yk j}∞j=1 converging in

(X, dX), hence in IRn, to p and p∗. But ‖xk j − yk j‖ ≤ diam(X)

k j
→ 0, we must have

p = p∗.
Now let us derive a contradiction. Take Wp, δp and Cp as in Proposition 3. Find

some 2 ≤ J ∈ IN such that yk j ∈ Wp and dX(xk j, yk j)<δp/2 for all j≥ J. Take q= yk j .

Then xk j ∈ Bq(Bδp/2(0)). For any j ≥ J, ‖xk j − yk j‖ ≤ 1
2 dX(xk j, yk j). Putting his into

(16), we see that

3

4
(dX(xk j, yk j))

2 ≤ Cp(dX(xk j, yk j))
3.

and hence

dX(xk j, yk j) ≥ 3

4Cp

which is a contradiction since dX(xk j, yk j) → 0 as j → ∞. This proves Lemma 1. 
�

To illustrate some knowledge on manifolds, we prove Proposition 2 and Proposi-
tion 3 here for completeness.

Proof of Proposition 2 The existence of a strongly convex neighborhood Up is
proved in Chapter 3 of [7] (as Proposition 4.2). By Theorem 3.7 there, there are
another neighborhood W̃p and a number δp > 0 such that (a) and (b) hold for W̃p.

Since Ep is a diffeomorphism of Bδp(0) onto an open subset Ep(Bδp(0)) of X, we
can find some 0 < δ∗ < δp such that the neighborhood Ep(Bδ∗(0)) of p is contained
in the open set Up ∩ W̃p. Take Wp = Ep

(
Bδ∗/2(0)

)
. It is a neighborhood of p and,

as a subset of W̃p, satisfies (a) and (b). Moreover, its closure equals Ep

(
Bδ∗/2(0)

)
⊂

Ep (Bδ∗(0)) ⊆ Up. Hence (c) also holds. This proves Proposition 2. 
�

Proof of Proposition 3 Recall that U = {u ∈ IRd : ‖u‖ < δp} and the functions
gq

ij(u) = gφq

ij (u) are well defined and C∞ on Wp × U satisfying gq
ij(0) = δij. Then the

function h(q, u) := det(gq
ij)(u) is nonnegative, C∞ on Wp × U and satisfies h(q, 0) = 1

for each q ∈ Wp. Now both Wp and B̃ := {u ∈ IRd : ‖u‖ ≤ δp/2} ⊂ U are compact
sets. So for every q ∈ Wp and every u ∈ B̃ there holds

|h(q, u) − 1| = |h(q, u) − h(q, 0)| ≤
{

d∑
i=1

∥∥∥∥ ∂h
∂ui

∥∥∥∥
2

C(W p×B̃)

}1/2

‖u‖
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which implies
∣∣∣√h(q, u) − 1

∣∣∣ = |h(q, u) − 1|√
h(q, u) + 1

≤ |h(q, u) − 1| ≤ C′
p‖u‖,

where C′
p =

{∑d
i=1

∥∥ ∂h
∂ui

∥∥2

C(W p×B̃)

}1/2
is a constant independent of q ∈ Wp. This proves

the inequality (15).
As to the second inequality (16), we do the same and define a vector-valued

function F : Wp × U → IRn as

F(q, u) = (F1(q, u), · · · , Fn(q, u)) := � ◦ Eq

(
d∑

i=1

uieq
i

)
.

This function is C∞ on Wp×U . Now for q ∈ Wp and u ∈ U , denote x= Eq(
∑d

i=1 uieq
i ).

Then ‖q − x‖2 = ‖F(q, 0) − F(q, u)‖2 = ∑n
α=1 (Fα(q, u) − Fα(q, 0))2. So using (14),

we have

d2
X(q, x) − ‖x − q‖2 = ‖u‖2 −

n∑
α=1

(
d∑

i=1

∂ Fα

∂ui
(q, 0)ui + Rα(q, u)

)2

(33)

where Rα(q, u) is a remainder term in the Taylor expansion which can be
bounded as

|Rα(q, u)| ≤
⎧⎨
⎩

n∑
i, j=1

∥∥∥∥ ∂2 Fα

∂ui∂u j
(q, u)

∥∥∥∥
2

C(Wp×B̃)

⎫⎬
⎭

1/2

‖u‖2, ∀q ∈ Wp, u ∈ B̃. (34)

To analyze (33), we need to find ∂ Fα

∂ui (q, 0). Towards this end, for i = 1, . . . , d,
choose the curve γ (t) = Eq(e

q
i t). Using (12), we have

d�q

(
∂

∂ui
(q)

)
= d� ◦ γ (t)

dt

∣∣∣∣
t=0

= d� ◦ Eq(e
q
i t)

dt

∣∣∣∣
t=0

=
(

∂ F1

∂ui
(q, 0), . . . ,

∂ Fn

∂ui
(q, 0)

)
.

Hence

gq
ij(0) =

〈
d�q

(
∂

∂ui
(q)

)
, d�q

(
∂

∂u j
(q)

)〉
IRn

=
n∑

α=1

∂ Fα

∂ui
(q, 0)

∂ Fα

∂u j
(q, 0).

But gq
ij(0) = δi, j, we obtain

d∑
i, j=1

n∑
α=1

∂ Fα

∂ui
(q, 0)

∂ Fα

∂ui
(q, 0)uiu j = ‖u‖2

and hence

n∑
α=1

(
d∑

i=1

∂ Fα

∂ui
(q, 0)ui + Rα(q, u)

)2

= ‖u‖2 + 2
n∑

α=1

d∑
i=1

∂ Fα

∂ui
(q, 0)ui Rα(q, u) +

n∑
α=1

(Rα(q, u))2
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This in connection with (33) tells us that or q ∈ Wp and u ∈ B̃ there holds

∣∣d2
X(q, x) − ‖x − q‖2

∣∣ ≤
∣∣∣∣∣2

n∑
α=1

d∑
i=1

∂ Fα

∂ui
(q, 0)ui Rα(q, u) +

n∑
α=1

(Rα(q, u))2

∣∣∣∣∣

≤ 2
n∑

α=1

{
d∑

i=1

∥∥∥∥∂ Fα

∂ui
(q, 0)

∥∥∥∥
2

C(W p)

}1/2

‖u‖|Rα(q, u)|+
n∑

α=1

(Rα(q, u))2 .

Together with (34) this verifies the inequality (16) with the constant

2

{
n∑

α=1

d∑
i=1

∥∥∥∥∂ Fα

∂ui
(q, 0)

∥∥∥∥
2

C(Wp)

}1/2
⎧⎨
⎩

n∑
α=1

n∑
i, j=1

∥∥∥∥ ∂2 Fα

∂ui∂u j
(q, u)

∥∥∥∥
2

C(Wp×B̃)

⎫⎬
⎭

1/2

+
n∑

α=1

n∑
i, j=1

∥∥∥∥ ∂2 Fα

∂ui∂u j
(q, u)

∥∥∥∥
2

C(Wp×B̃)

δp

2

independent of q ∈ Wp ⊂ Wp. This proves Proposition 3. 
�
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